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Periodic Solutions for a System of Nonlinear
Neutral Functional Difference Equations with

Two Functional Delays

Mouataz Billah Mesmouli, Abdelouaheb Ardjouni,
and Ahcene Djoudi

Abstract. In this paper, we study the existence and uniqueness of
periodic solutions of the system of nonlinear neutral difference equations

∆x (n) = A (n)x (n− τ (n)) + ∆Q (n, x (n− g (n)))

+G (n, x (n) , x (n− g (n))) .

By using Krasnoselski’s fixed point theorem we obtain the existence of
periodic solution and by contraction mapping principle we obtain the
uniqueness. An example is given to illustrate our result. Our results
extend and generalize the work [13].

1. Introduction

A qualitative analysis such as periodicity and stability of solutions of
neutral difference equations which the delay has been studied extensively
by many authors, we refer the readers to [1]–[5], [7]–[9], [10, 12, 13] and
references therein for a wealth of reference materials on the subject.

In 2005, Y. N. Raffoul in [13] studied the existence and uniqueness of
periodic solutions for the system of nonlinear neutral functional difference
equations

(1)
∆x (n) = A (n)x (n) + ∆Q (n, x (n− g (n)))

+G (n, x (n) , x (n− g (n))) .

By employing the Krasnoselskii’s fixed point theorem, the author obtained
existence results for periodic solutions. Also, the author used the contraction
mapping principle to show the uniqueness of periodic solutions of (1).
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In the current paper, we study the existence and uniqueness of periodic
solutions of the system of nonlinear neutral difference equations

(2)
∆x (n) = A (n)x (n− τ (n)) + ∆Q (n, x (n− g (n)))

+G (n, x (n) , x (n− g (n))) ,

where A(·) is N ×N matrix with sequences as its elements, τ , g : Z → Z+

are scalar and the functions Q : Z × RN → RN and G : Z × RN × RN →
RN are continuous in x. The sets Z and Z+ denote the integers and the
nonnegative integers, respectively. In the analysis we use the fundamental
matrix solution of ∆x (n) = A (n)x (n) to invert the system (2). Then
we employ the Krasnoselskii’s fixed point theorem to show the existence of
periodic solutions of system (2). The obtained mapping is the sum of two
mappings, one is a compact operator and the other is a contraction. Also,
transforming system (2) to a fixed point problem enables us to show the
uniqueness of the periodic solution by appealing to the contraction mapping
principle.

The organization of this paper is as follows. In Section 2, we present the
inversion of (2) and the fixed point theorems that we employ to help us show
the existence and uniqueness of periodic solutions to system (2). In Section
3, we present our main results with an example.

2. Preliminaries

For the definitions of the different notions used throughout this paper we
refer, for example [6, 7, 10, 11, 14].

For T > 1 define

CT =
{
φ : φ ∈ C

(
Z,RN

)
, φ (n+ T ) = φ (n)

}
,

where C
(
Z,RN

)
is the space of all N -vector continuous functions. Then CT

is a Banach space when it is endowed with the supremum norm

‖x (·) ‖ = max
n∈Z
|x (n) = max

n∈[0,T−1]∩Z
|x (n) |,

Note that CT is equivalent to the Euclidean space RNT , where |·| denotes
the infinity norm for x ∈ RN . Also, if A is an N ×N real matrix, then we
define the norm of A by

|A| = max
1≤i≤N

N∑
j=1

|aij | .

Definition 2.1. If the matrix B (·) is periodic of period T , then the linear
system

(3) y (n+ 1) = B (n) y (n) ,

is said to be noncritical with respect to T , if it has no periodic solution of
period T except the trivial solution y = 0.
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In this paper we assume that

(4)

A (n+ T ) = A (n) ,

τ (n+ T ) = τ (n) ≥ τ∗ > 0,

g (n+ T ) = g (n) ≥ g∗ > 0,

where τ∗, g∗ are constant. For n ∈ Z, x, y, z, w ∈ RN , the functions Q (n, x)
and G (n, x, y) are periodic in n of period T , they are also globally Lipschitz
continuous in x and in x and y, respectively. That is

(5) Q (n+ T, x) = Q (n, x) , G (n+ T, x, y) = G (n, x, y) ,

and there are positive constants k1, k2, k3 such that

(6) |Q (n, x)−Q (n, y)| ≤ k1 ‖x− y‖ ,

(7) |G (n, x, y)−G (n, z, w)| ≤ k2 ‖x− z‖+ k3 ‖y − w‖ .

Throughout this paper it is assumed that the matrix B (n) = I +A (n) is
nonsingular and the system (3) is noncritical, where I is the
N × N identity matrix. Also, if x (·) is a sequence, then the forward

operator E is defined as Ex (n) = x (n+ 1). Now, we state some known
results about system (3). Let K (n) represent the fundamental matrix of (3)
with K (0) = I, then:

a. detK (n) 6= 0.
b. K (n+ T ) = B (n)K (n) and K−1 (n+ T ) = K−1 (n)B−1 (n).
c. System (3) is noncritical if and only if det (I −K (T )) 6= 0.
d. There exists a nonsingular matrix L such that

K (n+ T ) = B (n)K (n)LT and
K−1 (n+ T ) = L−TK−1 (n).

The following lemma is fundamental to our results.

Lemma 2.1. Suppose (4) and (5) hold. If x ∈ CT , then x is a solution of
the equation (2) if and only if

(8)

x (n) = Q (n, x (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)x (s)

+

n+T−1∑
s=n

G (n, s)

A (s)

Q (s, x (s− g (s)))−
s−1∑

u=s−τ(s)

A (u)x (u)


+ F (s)x (s− τ (s)) +G (s, x (s) , x (s− g (s)))] ,

where

(9) G (n, s) = K (n)
(
K−1 (T )− I

)−1
K−1 (s)

(
I −A (s)B−1 (s)

)
,
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and

(10) F (n) = A (n)− (1−∆τ (n))A (n− τ (n)) .

Proof. Let x ∈ CT be a solution of (2) and K (·) is a fundamental matrix of
solutions for (3). Rewrite the equation (2) as

∆x (n) = A (n)x (n)−A (n)x (n) +A (n)x (n− τ (n))

+ ∆Q (n, x (n− g (n))) +G (n, x (n) , x (n− g (n)))

= A (n)x (n)−∆n

n−1∑
u=n−τ(n)

A (u)x (u)

+ [A (n)− (1−∆τ (n))A (n− τ (n))]x (n− τ (n))

+ ∆Q (n, x (n− g (n))) +G (n, x (n) , x (n− g (n))) .

We put A (n)− (1−∆τ (n))A (n− τ (n)) = F (n), we obtain

∆

x (n)−Q (n, x (n− g (n))) +

n−1∑
u=n−τ(n)

A (u)x (u)


= A (n)

x (n)−Q (n, x (n− g (n))) +
n−1∑

u=n−τ(n)

A (u)x (u)


+A (n)

Q (n, x (n− g (n)))−
n−1∑

u=n−τ(n)

A (u)x (u)


+ F (n)x (n− τ (n)) +G (n, x (n) , x (n− g (n))) .

Since K (n)K−1 (n) = I , it follows that

0 = ∆
[
K (n)K−1 (n)

]
= A (n)K (n)K−1 (n)B−1 (n) +K (n) ∆K−1 (n)

= A (n)B−1 (n) +K (n) ∆K−1 (n) .

This implies

∆K−1 (n) = −K−1 (n)A (n)B−1 (n) .
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If x (·) is a solution of (2) with x (0) = x0, then

∆

K−1 (n)

x (n)−Q (n, x (n− g (n))) +
n−1∑

u=n−τ(n)

A (u)x (u)


= ∆K−1 (n)E

x (n)−Q (n, x (n− g (n))) +

n−1∑
u=n−τ(n)

A (u)x (u)


+K−1 (n) ∆

x (n)−Q (n, x (n− g (n))) +
n−1∑

u=n−τ(n)

A (u)x (u)

 .
Thus

∆

K−1 (n)

x (n)−Q (n, x (n− g (n))) +
n−1∑

u=n−τ(n)

A (u)x (u)


= −K−1 (n)A (n)B−1 (n)

×

B (n)

x (n)−Q (n, x (n− g (n))) +

n−1∑
u=n−τ(n)

A (u)x (u)


+A (n)

Q (n, x (n− g (n)))−
n−1∑

u=n−τ(n)

A (u)x (u)


+ F (n)x (n− τ (n)) +G (n, x (n) , x (n− g (n)))]

+K−1 (n)A (n)

x (n)−Q (n, x (n− g (n))) +

n−1∑
u=n−τ(n)

A (u)x (u)


+K−1 (n)

A (n)

Q (n, x (n− g (n)))−
n−1∑

u=n−τ(n)

A (u)x (u)


+ F (n)x (n− τ (n)) +G (n, x (n) , x (n− g (n)))]

= K−1 (n)
(
I −A (n)B−1 (n)

)
×

A (n)

Q (n, x (n− g (n)))−
n−1∑

u=n−τ(n)

A (u)x (u)


+ F (n)x (n− τ (n)) +G (n, x (n) , x (n− g (n)))] .
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Summing of the above equation from 0 to n− 1 yields

(11)

x (n) = Q (n, x (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)x (s)

+K (n)

x (0)−Q (0, x (0− g (0))) +
−1∑

s=−τ(0)

A (s)x (s)


+K (n)

n−1∑
s=0

K−1 (s)
(
I −A (s)B−1 (s)

)
×

A (s)

Q (s, x (s− g (s)))−
s−1∑

u=s−τ(s)

A (u)x (u)


+ (F (s)x (s− τ (s)) +G (s, x (s) , x (s− g (s))))] .

Since x (T ) = x0 = x (0), using (11) we get

(12)

x (0)−Q (0, x (−g (0))) +
−1∑

s=−τ(0)

A (s)x (s)

= (I −K (T ))−1
T−1∑
s=0

K (T )K−1 (s)
(
I −A (s)B−1 (s)

)
×

A (s)

Q (s, x (s− g (s)))−
s−1∑

u=s−τ(s)

A (u)x (u)


+ (F (s)x (s− τ (s)) +G (s, x (s) , x (s− g (s))))] .

A substitution of (12) into (11) yields

(13)

x (n) = Q (n, x (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)x (s)

+K (n) (I −K (T ))−1
T−1∑
s=0

K (T )K−1 (s)
(
I −A (s)B−1 (s)

)
×

A (s)

Q (s, x (s− g (s)))−
s−1∑

u=s−τ(s)

A (u)x (u)

 +
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(13)

+ (F (s)x (s− τ (s)) +G (s, x (s) , x (s− g (s))))]

+K (n)

n−1∑
s=0

K−1 (s)
(
I −A (s)B−1 (s)

)
×

A (s)

Q (s, x (s− g (s)))−
s−1∑

u=s−τ(s)

A (u)x (u)


+ (F (s)x (s− τ (s)) +G (s, x (s) , x (s− g (s))))] .

Now, we will show that (13) is equivalent to (8). Since

(I −K (T ))−1 =
(
K (T )

(
K (T )−1 − I

))−1
=
(
K (T )−1 − I

)−1
K (T )−1 .

Then the equations (13) becomes

x (n) = Q (n, x (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)x (s)

+K (n)
(
K (T )−1 − I

)−1 T−1∑
s=0

K−1 (s)
(
I −A (s)B−1 (s)

)
×

A (s)

Q (s, x (s− g (s)))−
s−1∑

u=s−τ(s)

A (u)x (u)


+ (F (s)x (s− τ (s)) +G (s, x (s) , x (s− g (s))))]

+

n−1∑
s=0

K (n)K−1 (s)
(
I −A (s)B−1 (s)

)
×

A (s)

Q (s, x (s− g (s)))−
s−1∑

u=s−τ(s)

A (u)x (u)


+ (F (s)x (s− τ (s)) +G (s, x (s) , x (s− g (s))))] .

For the sake of simplicity, we let

D (s) =
(
I −A (s)B−1 (s)

)A (s)

Q (s, x (s− g (s)))−
s−1∑

u=s−τ(s)

A (u)x (u)


+ (F (s)x (s− τ (s)) +G (s, x (s) , x (s− g (s))))] ,
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then

x (n) = Q (n, x (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)x (s)

+K (n)
(
K (T )−1 − I

)−1
×

[
T−1∑
s=0

K−1 (s)D (s) +

n−1∑
s=0

(
K (T )−1 − I

)
K−1 (s)D (s)

]

= Q (n, x (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)x (s)

+K (n)
(
K (T )−1 − I

)−1 [T−1∑
s=0

K−1 (s)D (s)

+
n−1∑
s=0

K (T )−1K−1 (s)D (s)−
n−1∑
s=0

K−1 (s)D (s)

]
.

Thus

x (n) = Q (n, x (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)x (s)

+K (n)
(
K (T )−1 − I

)−1
×

[
−
n−1∑
s=T

K−1 (s)D (s) +

n−1∑
s=0

K (T )−1K−1 (s)D (s)

]
.

By letting s = v − T and U (T ) =
(
K (T )−1 − I

)−1
, the above expression

yields

(14)

x (n) = Q (n, x (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)x (s)

+K (n)
(
K (T )−1 − I

)−1 [
−
n−1∑
s=T

K−1 (s)D (s)

+
T+n−1∑
v=T

K (T )−1K−1 (v − T )D (v − T )

]
.

By (d) we have K (n− T ) = K (n)L−T and K (T ) = LT . Hence,

K−1 (T )K−1 (v − T ) = K−1 (v) .
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Consequently, since (4) and (5) hold, (14) becomes

(15)

x (n) = Q (n, x (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)x (s)

+K (n)
(
K (T )−1 − I

)−1
×

[
−
n−1∑
s=T

K−1 (s)D (s) +

T+n−1∑
s=T

K (T )−1K−1 (s)D (s)

]

= Q (n, x (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)x (s)

+K (n)
(
K (T )−1 − I

)−1 n+T−1∑
s=n

K (T )−1K−1 (s)D (s) .

The converse implication is easily obtained and the proof is complete. �

We end this section by stating the fixed point theorems that we employ to
help us show the existence and uniqueness of periodic solutions to equation
(2); see [6, 14].

Theorem 2.1 (Contraction Mapping Principle). Let (X , ρ) a complete
metric space and let P : X → X . If there is a constant α < 1 such that for
x, y ∈ X we have

ρ (Px, Py) ≤ αρ (x, y) ,

then there is one and only one point z ∈ X with Pz = z.

Krasnoselskii (see [14]) combined the contraction mapping theorem and
Shauder’s theorem and formulated the following hybrid result.

Theorem 2.2 (Krasnoselskii). Let M be a closed bounded convex nonempty
subset of a Banach space (X , ‖·‖). Suppose that R and S map M into X
such that

(i) R is compact and continuous,
(ii) S is a contraction mapping,

(iii) x, y ∈M, implies Rx+ Sy ∈M,
then there exists z ∈M with z = Rz + Sz.

3. Existence and Uniqueness of Periodic Solution

By applying Theorems 2.1 and 2.2, we obtain in this Section the existence
and the uniqueness of the periodic solution of (2). So, let a Banach space
(CT , ‖·‖), a closed bounded convex subset of CT ,

(16) M = {ϕ ∈ CT , ‖ϕ‖ ≤ L} ,
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with L > 0, and by the Lemma 2.1, let a mapping H given by

(Hϕ) (n) = Q (n, ϕ (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)ϕ (s)

+

n+T∑
s=n

G (n, s)

A (s)

Q (s, ϕ (s− g (s)))−
s−1∑

u=s−τ(s)

A (u)ϕ (u)

(17)

+ F (s)ϕ (s− τ (s)) +G (s, ϕ (s) , ϕ (s− g (s)))] .

Therefore, we express equation (17) as

Hϕ = Rϕ+ Sϕ,
where R and S are given by

(Rϕ) (n) =
n+T∑
s=n

G (n, s)

A (s)

Q (s, ϕ (s− g (s)))−
s−1∑

u=s−τ(s)

A (u)ϕ (u)


+ F (s)ϕ (s− τ (s)) +G (s, ϕ (s) , ϕ (s− g (s)))] ,(18)

and

(19) (Sϕ) (n) = Q (n, ϕ (n− g (n)))−
n−1∑

s=n−τ(n)

A (s)ϕ (s) .

By a series of steps we will prove the fulfillment of (i), (ii) and (iii) in
Theorem 2.2. So that, since ϕ ∈ CT , (4) and (5) hold, we have for ϕ ∈M
(20) (Rϕ) (n+ T ) = (Rϕ) (n) and Rϕ ∈ C

(
Z,RN

)
=⇒ (RM) ⊂ CT ,

and

(21) (Sϕ) (n+ T ) = (Sϕ) (n) and Rϕ ∈ C
(
Z,RN

)
=⇒ (SM) ⊂ CT .

Lemma 3.1. Suppose (4)–(7) hold. If R is defined by (18), then R is
continuous and the image of R is contained in a compact set.

Proof. Let ϕN ∈ M where N is a positive integer such that ϕN → ϕ as
N →∞. Then

|(RϕN ) (n)− (Rϕ) (n)|

≤
n+T∑
s=n

|G (n, s)|
[
|A (s)|

( s−1∑
u=s−τ(s)

|A (u)| |ϕN (u)− ϕ (u)|

+ |Q (s, ϕN (s− g (s)))−Q (s, ϕ (s− g (s)))|
)

+ |F (s)| |ϕN (s− τ (s))− ϕ (s− τ (s))|

+ |G (s, ϕN (s) , ϕN (s− g (s)))−G (s, ϕ (s) , ϕ (s− g (s)))|
]
.
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Since Q, G are continuous, the Dominated Convergence Theorem implies,

lim
N→∞

|(RϕN ) (n)− (Rϕ) (n)| = 0,

then R is continuous. Next, we show that the image of R is contained in a
compact set, letM defined by (16), by (6) and (7), we obtain

|Q (n, y)| ≤ |Q (n, y)−Q (n, 0) +Q (n, 0)|
≤ k1 ‖y‖+ |Q (n, 0)| , |G (n, x, y)|
≤ |G (n, x, y)−G (n, 0, 0) +G (n, 0, 0)|
≤ k2 ‖x‖+ k3 ‖y‖+ |G (n, 0, 0)| .

Let ϕN ∈M where N is a positive integer, then by (18) we obtain

‖(Rϕ) (·)‖ ≤ c
T−1∑
s=0

[|A| (α |A|+ k1L+ β) + |F |L+ (k2 + k3)L+ γ]

= cT [|A| (α |A|L+ k1L+ β) + |F |L+ (k2 + k3)L+ γ] ,

where

α = sup
n∈[0,T−1]∩Z

|τ (n)| ,

β = sup
n∈[0,T−1]∩Z

|Q (n, 0)| ,

γ = sup
n∈[0,T−1]∩Z

|G (n, 0, 0)| ,

c = sup
n∈[0,T−1]∩Z

(
sup

s∈[n,n+T−1]∩Z
|G (n, s)|

)
.

Second, we show that R maps bounded subsets into compact sets. As M
is bounded and R is continuous, then RM is a subset of RNT which is
bounded. Thus RM is contained in a compact subset of M. Therefore R
is continuous inM and RM is contained in a compact subset ofM. �

Lemma 3.2. Suppose (4)–(6) hold and

(22) k1 + α |A| < 1.

If S is defined by (19), then S is a contraction.

Proof. Let S be defined by (19). Then for ϕ1, ϕ2 ∈M we have by (6)

|(Sϕ1) (n)− (Sϕ2) (n)| =
∣∣∣∣Q (n, ϕ1 (n− g (n)))−Q (n, ϕ2 (n− g (n)))

+
n−1∑

s=n−τ(n)

A (s)ϕ1 (s)−
n−1∑

s=n−τ(n)

A (s)ϕ2 (s)

∣∣∣∣
≤ (k1 + α |A|) ‖ϕ1 − ϕ2‖ .

Hence S is contraction by (22). �
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Theorem 3.1. Suppose the assumptions of the Lemmas 3.1 and 3.2 hold.
If there exists a constant L > 0 defined inM such that

cT
[
|A| (α |A|L+ k1L+ β) + |F |L+ (k2 + k3)L+ γ

]
+ k1L+ β + α |A|L ≤ L.

Then (2) has a T -periodic solution.

Proof. By Lemma 3.1, R : M → CT is continuous and R(M) is contained
in a compact set. Also, from Lemma 3.2, the mapping S : M → CT is a
contraction. Next, we show that if ϕ, φ ∈M, we have ‖Rϕ+ Sφ‖ ≤ L. Let
ϕ, φ ∈M with ‖ϕ‖ , ‖φ‖ ≤ L. Then

‖(Rϕ) (·) + (Sφ) (·)‖ ≤ cT
[
|A| (α |A|L+ k1L+ β)

+ |F |L+ (k2 + k3)L+ γ
]

+ k1L+ β + α |A|L
≤ L.

Clearly, all the hypotheses of the Krasnoselskii’s theorem are satisfied. Thus
there exists a fixed point z ∈ M such that z = Rz + Sz. By Lemma 2.1
this fixed point is a solution of (2). Hence (2) has a T -periodic solution. �

Theorem 3.2. Suppose the assumptions of Lemma 2.1 hold. If

(23) cT
[
|A| (α |A|+ k1) + |F |+ (k2 + k3)

]
+ k1 + α |A| < 1,

then equation (2) has a unique T -periodic solution.

Proof. Let the mapping H be given by (17). For ϕ1, ϕ2 ∈ CT , we have

|(Hϕ1) (n)− (Hϕ2) (n)|
≤ |Q (n, ϕ1 (n− g (n)))−Q (n, ϕ2 (n− g (n)))

+

n−1∑
s=n−τ(n)

A (s)ϕ1 (s)−
n−1∑

s=n−τ(n)

A (s)ϕ2 (s)

∣∣∣∣∣∣
+

n+T∑
s=n

|G (n, s)| |A (s)|

 s−1∑
u=s−τ(s)

|A (u)| |ϕ1 (u)− ϕ2 (u)|

+ |Q (s, ϕ1 (s− g (s)))−Q (s, ϕ2 (s− g (s)))|]

+
n+T∑
s=n

|G (n, s)| [|F (s)| |ϕ1 (s− τ (s))− ϕ2 (s− τ (s))|

+ |G (s, ϕ1 (s) , ϕ1 (s− g (s)))−G (s, ϕ2 (s) , ϕ2 (s− g (s)))|]
= [cT [|A| (α |A|+ k1) + |F |+ (k2 + k3)] + k1 + α |A|] ‖ϕ1 − ϕ2‖
< ‖ϕ1 − ϕ2‖ .

Since (23) hold, the Contraction Mapping Principle completes the proof. �
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Corollary 3.1. Suppose (4) and (5) hold. LetM defined by (16). Suppose
there are positive constants k∗1, k

∗
2 and k∗3, such that for x, y, z and w ∈M,

we have

(24) |Q (n, x)−Q (n, y)| ≤ k∗1 ‖x− y‖ and k∗1 < 1,

(25) |G (n, x, y)−G (n, z, w) | ≤ k∗2‖x− z‖+ k∗3‖y − w‖.

and

(26)
cT
[
|A| (α |A|L+ k∗1L+ β) + |F |L+ (k∗2 + k∗3)L+ γ

]
+ k∗1L+ β + α |A|L ≤ L.

If ‖Hϕ‖ ≤ L, for ϕ ∈ M, then (2) has a T -periodic solution in M. More-
over, if

cT
[
|A| (α |A|+ k∗1) + |F |+ (k∗2 + k∗3)

]
+ k∗1 + α |A| < 1,

then (2) has a unique solution inM.

Proof. Let the mapping H defined by (17). Then the proof follow immedi-
ately from Theorem 3.1 and Theorem 3.2. �

Remark 3.1. Note that, when τ (n) = 0, the Theorems 3.1 and 3.2 reduces
to the Theorems 2.5 and 2.7 respectively in [13]. The first part of the
Corollary 3.1 reduces to [13, Corollary 2.6] and the second part reduces to
[13, Corollary 2.8].

Example 3.1. Consider the 2-dimensional nonlinear neutral difference sys-
tem

(27)

∆

(
x1(n)
x2(n)

)
=

(
0 λ4
−λ4 −λ4

)(
x1(n− τ(n))
x2(n− τ(n))

)
+ ∆

(
0

λ1 sin(n)x21(n− g(n))

)
+

(
0

λ2 cos(n)x1(n)− λ3x1(n− g(n))

)
,

where

A(·) =

(
0 λ4
−λ4 −λ4

)
,

Q(n, x(n− g(n))) =

(
0

λ1 sin(n)x21(n− g(n))

)
,

G(n, x(n), x(n− g(n))) =

(
0

λ2 cos(n)x1(n)− λ3x1(n− g(n))

)
.

Let τ (n) = α ∈ Z+, g (·) : Z → Z+ are nonnegative sequence and 2π-
periodic. Since the matrix B = I + A has eigenvalues with non-zero real
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parts, the system x (n+ 1) = Bx (n) is noncritical. So, let a Banach space
(C2π, ‖·‖),

C2π =
{
φ : φ ∈ C

(
Z,R2

)
, φ (n+ T ) = φ (n)

}
,

a closed bounded convex subset of CT ,

M = {ϕ ∈ C2π, ‖ϕ‖ ≤ L} .

Let ϕ = (ϕ1, ϕ2), φ = (φ1, φ2). Then for ϕ, φ ∈M we have

‖G (·, ϕ (·) , ϕ (· − g (·)))−G (·, φ (·) , φ (· − g (·)))‖
≤ λ2 ‖ϕ− φ‖+ λ3 ‖ϕ− φ‖ .

Hence k∗2 = λ2, k
∗
3 = λ3, in the same way k∗1 = 2λ1L, β = 0, γ = 0 and

F (n) = A (n)− (1−∆τ (n))A (n− τ (n)) = 0, |A| = λ4.

Consequently

cT
[
λ4
(
αλ4L+ 2λ1L

2
)

+ (λ2 + λ3)L
]

+ 2λ1L
2 + αλ4L ≤ L,

for all λi, 1 ≤ i ≤ 4 small enough. Then (27) has a 2π-periodic solution, by
Corollary 3.1. Moreover,

cT
[
λ4 (αλ4 + 2λ1L) + (λ2 + λ3)

]
+ 2λ1L+ αλ4 < 1,

is satisfied for λi, 1 ≤ i ≤ 4 small enough. Then (27) has a unique 2π-
periodic solution, by Corollary 3.1.
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